3.348 \(\int \frac{1}{x (d+e x)^2 \sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=179 \[ \frac{e^2 \sqrt{a+c x^2}}{d (d+e x) \left (a e^2+c d^2\right )}+\frac{e \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{d^2 \sqrt{a e^2+c d^2}}+\frac{c e \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{\sqrt{a} d^2} \]

[Out]

(e^2*Sqrt[a + c*x^2])/(d*(c*d^2 + a*e^2)*(d + e*x)) + (c*e*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a +
 c*x^2])])/(c*d^2 + a*e^2)^(3/2) + (e*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(d^2*Sqrt[
c*d^2 + a*e^2]) - ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]]/(Sqrt[a]*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.137258, antiderivative size = 179, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {961, 266, 63, 208, 731, 725, 206} \[ \frac{e^2 \sqrt{a+c x^2}}{d (d+e x) \left (a e^2+c d^2\right )}+\frac{e \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{d^2 \sqrt{a e^2+c d^2}}+\frac{c e \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{\sqrt{a} d^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

(e^2*Sqrt[a + c*x^2])/(d*(c*d^2 + a*e^2)*(d + e*x)) + (c*e*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a +
 c*x^2])])/(c*d^2 + a*e^2)^(3/2) + (e*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(d^2*Sqrt[
c*d^2 + a*e^2]) - ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]]/(Sqrt[a]*d^2)

Rule 961

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] && ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 731

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)*(a + c*x^2)^(p
 + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d)/(c*d^2 + a*e^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x]
 /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m + 2*p + 3, 0]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x (d+e x)^2 \sqrt{a+c x^2}} \, dx &=\int \left (\frac{1}{d^2 x \sqrt{a+c x^2}}-\frac{e}{d (d+e x)^2 \sqrt{a+c x^2}}-\frac{e}{d^2 (d+e x) \sqrt{a+c x^2}}\right ) \, dx\\ &=\frac{\int \frac{1}{x \sqrt{a+c x^2}} \, dx}{d^2}-\frac{e \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx}{d^2}-\frac{e \int \frac{1}{(d+e x)^2 \sqrt{a+c x^2}} \, dx}{d}\\ &=\frac{e^2 \sqrt{a+c x^2}}{d \left (c d^2+a e^2\right ) (d+e x)}+\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+c x}} \, dx,x,x^2\right )}{2 d^2}+\frac{e \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )}{d^2}-\frac{(c e) \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx}{c d^2+a e^2}\\ &=\frac{e^2 \sqrt{a+c x^2}}{d \left (c d^2+a e^2\right ) (d+e x)}+\frac{e \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{d^2 \sqrt{c d^2+a e^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{a}{c}+\frac{x^2}{c}} \, dx,x,\sqrt{a+c x^2}\right )}{c d^2}+\frac{(c e) \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )}{c d^2+a e^2}\\ &=\frac{e^2 \sqrt{a+c x^2}}{d \left (c d^2+a e^2\right ) (d+e x)}+\frac{c e \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{\left (c d^2+a e^2\right )^{3/2}}+\frac{e \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{d^2 \sqrt{c d^2+a e^2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{\sqrt{a} d^2}\\ \end{align*}

Mathematica [A]  time = 0.251733, size = 178, normalized size = 0.99 \[ \frac{\frac{d e^2 \sqrt{a+c x^2}}{(d+e x) \left (a e^2+c d^2\right )}+\frac{e \left (a e^2+2 c d^2\right ) \log \left (\sqrt{a+c x^2} \sqrt{a e^2+c d^2}+a e-c d x\right )}{\left (a e^2+c d^2\right )^{3/2}}-\frac{e \left (a e^2+2 c d^2\right ) \log (d+e x)}{\left (a e^2+c d^2\right )^{3/2}}-\frac{\log \left (\sqrt{a} \sqrt{a+c x^2}+a\right )}{\sqrt{a}}+\frac{\log (x)}{\sqrt{a}}}{d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

((d*e^2*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*(d + e*x)) + Log[x]/Sqrt[a] - (e*(2*c*d^2 + a*e^2)*Log[d + e*x])/(c*
d^2 + a*e^2)^(3/2) - Log[a + Sqrt[a]*Sqrt[a + c*x^2]]/Sqrt[a] + (e*(2*c*d^2 + a*e^2)*Log[a*e - c*d*x + Sqrt[c*
d^2 + a*e^2]*Sqrt[a + c*x^2]])/(c*d^2 + a*e^2)^(3/2))/d^2

________________________________________________________________________________________

Maple [B]  time = 0.256, size = 364, normalized size = 2. \begin{align*} -{\frac{1}{{d}^{2}}\ln \left ({\frac{1}{x} \left ( 2\,a+2\,\sqrt{a}\sqrt{c{x}^{2}+a} \right ) } \right ){\frac{1}{\sqrt{a}}}}+{\frac{1}{{d}^{2}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}+{\frac{e}{d \left ( a{e}^{2}+c{d}^{2} \right ) }\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \left ({\frac{d}{e}}+x \right ) ^{-1}}+{\frac{c}{a{e}^{2}+c{d}^{2}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(e*x+d)^2/(c*x^2+a)^(1/2),x)

[Out]

-1/d^2/a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)+1/d^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2
*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))+e/d
/(a*e^2+c*d^2)/(d/e+x)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2)+c/(a*e^2+c*d^2)/((a*e^2+c*d^2)/e^
2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e
^2+c*d^2)/e^2)^(1/2))/(d/e+x))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a}{\left (e x + d\right )}^{2} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)^2*x), x)

________________________________________________________________________________________

Fricas [A]  time = 4.89092, size = 2619, normalized size = 14.63 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*((2*a*c*d^3*e + a^2*d*e^3 + (2*a*c*d^2*e^2 + a^2*e^4)*x)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 -
 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e
*x + d^2)) + (c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x)*sqrt(a)*log(-(c*x
^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*(a*c*d^3*e^2 + a^2*d*e^4)*sqrt(c*x^2 + a))/(a*c^2*d^7 + 2*a^2*c
*d^5*e^2 + a^3*d^3*e^4 + (a*c^2*d^6*e + 2*a^2*c*d^4*e^3 + a^3*d^2*e^5)*x), 1/2*(2*(2*a*c*d^3*e + a^2*d*e^3 + (
2*a*c*d^2*e^2 + a^2*e^4)*x)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*
c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) + (c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^
3 + a^2*e^5)*x)*sqrt(a)*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*(a*c*d^3*e^2 + a^2*d*e^4)*sqrt
(c*x^2 + a))/(a*c^2*d^7 + 2*a^2*c*d^5*e^2 + a^3*d^3*e^4 + (a*c^2*d^6*e + 2*a^2*c*d^4*e^3 + a^3*d^2*e^5)*x), 1/
2*(2*(c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x)*sqrt(-a)*arctan(sqrt(-a)/
sqrt(c*x^2 + a)) + (2*a*c*d^3*e + a^2*d*e^3 + (2*a*c*d^2*e^2 + a^2*e^4)*x)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*
x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^
2*x^2 + 2*d*e*x + d^2)) + 2*(a*c*d^3*e^2 + a^2*d*e^4)*sqrt(c*x^2 + a))/(a*c^2*d^7 + 2*a^2*c*d^5*e^2 + a^3*d^3*
e^4 + (a*c^2*d^6*e + 2*a^2*c*d^4*e^3 + a^3*d^2*e^5)*x), ((2*a*c*d^3*e + a^2*d*e^3 + (2*a*c*d^2*e^2 + a^2*e^4)*
x)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^
2 + a*c*e^2)*x^2)) + (c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x)*sqrt(-a)*
arctan(sqrt(-a)/sqrt(c*x^2 + a)) + (a*c*d^3*e^2 + a^2*d*e^4)*sqrt(c*x^2 + a))/(a*c^2*d^7 + 2*a^2*c*d^5*e^2 + a
^3*d^3*e^4 + (a*c^2*d^6*e + 2*a^2*c*d^4*e^3 + a^3*d^2*e^5)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \sqrt{a + c x^{2}} \left (d + e x\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)**2/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(x*sqrt(a + c*x**2)*(d + e*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError